神经网络越来越依赖于复杂安全系统(例如自动驾驶汽车)的组成部分。对在更大的验证周期中嵌入神经网络验证的工具和方法的需求很高。但是,由于关注的广泛验证属性,很难进行神经网络验证,通常每个验证属性仅适用于专用求解器中的验证。在本文中,我们展示了最初设计用于验证,验证和仿真金融基础架构的功能编程语言的Imandra如何为神经网络验证提供整体基础架构。我们开发了一个新颖的图书馆Checkinn,该图书馆在Imandra的神经网络上形式化,并涵盖了神经网络验证的不同重要方面。
translated by 谷歌翻译
近年来,神经网络(NNS)的普及及其在现实世界应用中的普遍性的日益普及引起了人们对其验证的重要性的关注。虽然验证在理论上是计算困难的,但在实践中提出了许多解决该验证的技术。在文献中已经观察到,默认情况下,神经网络很少满足我们想要验证的逻辑约束。良好的行动是在验证验证之前训练给定的NN满足上述约束。这个想法有时被称为持续验证,指训练和验证之间的循环。通常,通过将给定正式逻辑语言的翻译指定为损失功能,可以实现带有约束的培训。然后,这些损失功能用于训练神经网络。因为为了培训目的,这些功能需要可区分,因此这些翻译称为可区分逻辑(DL)。这提出了几个研究问题。什么样的可区分逻辑是可能的?在连续验证的背景下,DL的特定选择有什么区别?从最终损失函数的角度来看,DL的理想标准是什么?在这个扩展的摘要中,我们将讨论并回答这些问题。
translated by 谷歌翻译
随着深度机器学习对现实生活应用的扩散,该技术的一种特殊属性引起了人们的注意:稳健性神经网络臭名昭著地表现出低的鲁棒性,并且对小输入扰动非常敏感。最近,已经提出了许多用于验证网络鲁棒性的一般特性的方法,但是它们主要用于计算机视觉。在本文中,我们提出了基于较大感兴趣区域的自然语言理解分类的验证规范,我们讨论了此类任务的挑战。我们观察到,尽管数据几乎是线性可分离的,但验证者努力输出积极的结果,我们解释了问题和含义。
translated by 谷歌翻译
神经网络在检测嘈杂数据中的模式方面非常成功,并且已成为许多领域的首选技术。但是,他们对对抗攻击的敏感性阻碍了它们的有用性。最近,已经提出了许多用于衡量和改善网络对对抗性扰动的鲁棒性的方法,并且这项不断增长的研究体现了许多明确或隐性的鲁棒性观念。这些概念之间的联系通常是微妙的,文献中缺少它们之间的系统比较。在本文中,我们开始解决这一差距,通过在网络的培训阶段,其验证和部署之后设置对网络鲁棒性作为数学属性的经验分析和评估的一般原则。然后,我们应用这些原则并进行案例研究,以展示我们一般方法的实际好处。
translated by 谷歌翻译
Extracting complex structures from grid-based data is a common key step in automated medical image analysis. The conventional solution to recovering tree-structured geometries typically involves computing the minimal cost path through intermediate representations derived from segmentation masks. However, this methodology has significant limitations in the context of projective imaging of tree-structured 3D anatomical data such as coronary arteries, since there are often overlapping branches in the 2D projection. In this work, we propose a novel approach to predicting tree connectivity structure which reformulates the task as an optimization problem over individual steps of a recursive process. We design and train a two-stage model which leverages the UNet and Transformer architectures and introduces an image-based prompting technique. Our proposed method achieves compelling results on a pair of synthetic datasets, and outperforms a shortest-path baseline.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs). We begin a systematic computer-aided search for these objects. We develop and implement constraint-based algorithms build on reductions to $\mathrm{SAT}$ and $\mathrm{IP}$ to verify that puzzles are strong USPs, and to search for large strong USPs. We produce tight bounds on the maximum size of a strong USP for width $k \le 5$, construct puzzles of small width that are larger than previous work, and improve the upper bounds on strong USP size for $k \le 12$. Although our work only deals with puzzles of small-constant width, the strong USPs we find imply matrix multiplication algorithms that run in $O(n^\omega)$ time with exponent $\omega \le 2.66$. While our algorithms do not beat the fastest algorithms, our work provides evidence and, perhaps, a path to finding families of strong USPs that imply matrix multiplication algorithms that are more efficient than those currently known.
translated by 谷歌翻译
Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
translated by 谷歌翻译
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds).
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译